Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
bioRxiv ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38496566

RESUMO

Classic Hodgkin Lymphoma (cHL) is a tumor composed of rare malignant Hodgkin and Reed-Sternberg (HRS) cells nested within a T-cell rich inflammatory immune infiltrate. cHL is associated with Epstein-Barr Virus (EBV) in 25% of cases. The specific contributions of EBV to the pathogenesis of cHL remain largely unknown, in part due to technical barriers in dissecting the tumor microenvironment (TME) in high detail. Herein, we applied multiplexed ion beam imaging (MIBI) spatial pro-teomics on 6 EBV-positive and 14 EBV-negative cHL samples. We identify key TME features that distinguish between EBV-positive and EBV-negative cHL, including the relative predominance of memory CD8 T cells and increased T-cell dysfunction as a function of spatial proximity to HRS cells. Building upon a larger multi-institutional cohort of 22 EBV-positive and 24 EBV-negative cHL samples, we orthogonally validated our findings through a spatial multi-omics approach, coupling whole transcriptome capture with antibody-defined cell types for tu-mor and T-cell populations within the cHL TME. We delineate contrasting transcriptomic immunological signatures between EBV-positive and EBV-negative cases that differently impact HRS cell proliferation, tumor-immune interactions, and mecha-nisms of T-cell dysregulation and dysfunction. Our multi-modal framework enabled a comprehensive dissection of EBV-linked reorganization and immune evasion within the cHL TME, and highlighted the need to elucidate the cellular and molecular fac-tors of virus-associated tumors, with potential for targeted therapeutic strategies.

2.
bioRxiv ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38496402

RESUMO

The intricate and dynamic interactions between the host immune system and its microbiome constituents undergo dynamic shifts in response to perturbations to the intestinal tissue environment. Our ability to study these events on the systems level is significantly limited by in situ approaches capable of generating simultaneous insights from both host and microbial communities. Here, we introduce Microbiome Cartography (MicroCart), a framework for simultaneous in situ probing of host features and its microbiome across multiple spatial modalities. We demonstrate MicroCart by comprehensively investigating the alterations in both gut host and microbiome components in a murine model of colitis by coupling MicroCart with spatial proteomics, transcriptomics, and glycomics platforms. Our findings reveal a global but systematic transformation in tissue immune responses, encompassing tissue-level remodeling in response to host immune and epithelial cell state perturbations, and bacterial population shifts, localized inflammatory responses, and metabolic process alterations during colitis. MicroCart enables a deep investigation of the intricate interplay between the host tissue and its microbiome with spatial multiomics.

3.
Neuroscience ; 546: 75-87, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38552733

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder for which there are very limited treatment options. Dysfunction of the excitatory neurotransmitter system is thought to play a major role in the pathogenesis of this condition. Vesicular glutamate transporters (VGLUTs) are key to controlling the quantal release of glutamate. Thus, expressional changes in disease can have implications for aberrant neuronal activity, raising the possibility of a therapeutic target. There is no information regarding the expression of VGLUTs in the human medial temporal lobe in AD, one of the earliest and most severely affected brain regions. This study aimed to quantify and compare the layer-specific expression of VGLUT1 and VGLUT2 between control and AD cases in the hippocampus, subiculum, entorhinal cortex, and superior temporal gyrus. Free-floating fluorescent immunohistochemistry was used to label VGLUT1 and VGLUT2 in the hippocampus, subiculum, entorhinal cortex, and superior temporal gyrus. Sections were imaged using laser-scanning confocal microscopy and transporter densitometric analysis was performed. VGLUT1 density was not significantly different in AD tissue, except lower staining density observed in the dentate gyrus stratum moleculare (p = 0.0051). VGLUT2 expression was not altered in the hippocampus and entorhinal cortex of AD cases but was significantly lower in the subiculum (p = 0.015) and superior temporal gyrus (p = 0.0023). This study indicates a regionally specific vulnerability of VGLUT1 and VGLUT2 expression in the medial temporal lobe and superior temporal gyrus in AD. However, the causes and functional consequences of these disturbances need to be further explored to assess VGLUT1 and VGLUT2 as viable therapeutic targets.

4.
Nat Commun ; 15(1): 28, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167832

RESUMO

Highly multiplexed protein imaging is emerging as a potent technique for analyzing protein distribution within cells and tissues in their native context. However, existing cell annotation methods utilizing high-plex spatial proteomics data are resource intensive and necessitate iterative expert input, thereby constraining their scalability and practicality for extensive datasets. We introduce MAPS (Machine learning for Analysis of Proteomics in Spatial biology), a machine learning approach facilitating rapid and precise cell type identification with human-level accuracy from spatial proteomics data. Validated on multiple in-house and publicly available MIBI and CODEX datasets, MAPS outperforms current annotation techniques in terms of speed and accuracy, achieving pathologist-level precision even for typically challenging cell types, including tumor cells of immune origin. By democratizing rapidly deployable and scalable machine learning annotation, MAPS holds significant potential to expedite advances in tissue biology and disease comprehension.


Assuntos
Aprendizado de Máquina , Patologistas , Humanos , Diagnóstico por Imagem , Proteômica/métodos
5.
Dalton Trans ; 53(3): 1178-1189, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38108120

RESUMO

Coordination chemistry and frustrated Lewis pair (FLP) chemistry have been most commonly studied using monodentate Lewis acids. In this paper, we examine the corresponding reactions employing the 1,1- and 1,2-bis-boranes, PhCH2CH(B(C6F5)2)21 and Me3SiCH(B(C6F5)2)CH2B(C6F5)22, respectively. Coordination of isocyanide to these species results in the formation of the products RCH(B(C6F5)2CNtBu)CH2(B(C6F5)2CNtBu) (R = Ph 3, Me3Si 4). The rearrangement of 1 to give the 1,2-bis-borane adduct 3 was probed and attributed to a donor-induced retrohydroboration and subsequent hydroboration. The analogous reaction of 1 is evident in efforts to use the Gutman-Beckett method to assess its Lewis acidity. However, in combination with tBu3P, bis-boranes 1 and 2 form FLPs and react with H2 to give [tBu3PH][PhCH2CH(B(C6F5)2)2(µ-H)] 5a and [tBu3PH][Me3SiCH(B(C6F5)2)CH2(B(C6F5)2)(µ-H)] 6, respectively. Reactions of 1 and 2 with various donors and PhCCH were shown to give deprotonation and addition products, depending on the nature of the base. However, in the case of 1, products resulting from retrohydroboration, and subsequent hydroboration are evident. Several of these alkyne products are crystallographically characterized.

6.
NPJ Vaccines ; 8(1): 160, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863935

RESUMO

An attenuated SARS-CoV-2 virus with modified viral transcriptional regulatory sequences and deletion of open-reading frames 3, 6, 7 and 8 (∆3678) was previously reported to protect hamsters from SARS-CoV-2 infection and transmission. Here we report that a single-dose intranasal vaccination of ∆3678 protects K18-hACE2 mice from wild-type or variant SARS-CoV-2 challenge. Compared with wild-type virus infection, the ∆3678 vaccination induces equivalent or higher levels of lung and systemic T cell, B cell, IgA, and IgG responses. The results suggest ∆3678 as an attractive mucosal vaccine candidate to boost pulmonary immunity against SARS-CoV-2.

7.
Sci Adv ; 9(39): eadd9668, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37756410

RESUMO

Neuroendocrine tumors (NETs) are rare cancers that most often arise in the gastrointestinal tract and pancreas. The fundamental mechanisms driving gastroenteropancreatic (GEP)-NET growth remain incompletely elucidated; however, the heterogeneous clinical behavior of GEP-NETs suggests that both cellular lineage dynamics and tumor microenvironment influence tumor pathophysiology. Here, we investigated the single-cell transcriptomes of tumor and immune cells from patients with gastroenteropancreatic NETs. Malignant GEP-NET cells expressed genes and regulons associated with normal, gastrointestinal endocrine cell differentiation, and fate determination stages. Tumor and lymphoid compartments sparsely expressed immunosuppressive targets commonly investigated in clinical trials, such as the programmed cell death protein-1/programmed death ligand-1 axis. However, infiltrating myeloid cell types within both primary and metastatic GEP-NETs were enriched for genes encoding other immune checkpoints, including VSIR (VISTA), HAVCR2 (TIM3), LGALS9 (Gal-9), and SIGLEC10. Our findings highlight the transcriptomic heterogeneity that distinguishes the cellular landscapes of GEP-NET anatomic subtypes and reveal potential avenues for future precision medicine therapeutics.


Assuntos
Neoplasias Intestinais , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Neoplasias Gástricas , Humanos , Tumores Neuroendócrinos/genética , Neoplasias Intestinais/genética , Neoplasias Gástricas/genética , Neoplasias Pancreáticas/genética , Microambiente Tumoral/genética
8.
Eur Radiol ; 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37696974

RESUMO

OBJECTIVES: Prognostic and diagnostic models must work in their intended clinical setting, proven via "external evaluation", preferably by authors uninvolved with model development. By systematic review, we determined the proportion of models published in high-impact radiological journals that are evaluated subsequently. METHODS: We hand-searched three radiological journals for multivariable diagnostic/prognostic models 2013-2015 inclusive, developed using regression. We assessed completeness of data presentation to allow subsequent external evaluation. We then searched literature to August 2022 to identify external evaluations of these index models. RESULTS: We identified 98 index studies (73 prognostic; 25 diagnostic) describing 145 models. Only 15 (15%) index studies presented an evaluation (two external). No model was updated. Only 20 (20%) studies presented a model equation. Just 7 (15%) studies developing Cox models presented a risk table, and just 4 (9%) presented the baseline hazard. Two (4%) studies developing non-Cox models presented the intercept. Just 20 (20%) articles presented a Kaplan-Meier curve of the final model. The 98 index studies attracted 4224 citations (including 559 self-citations), median 28 per study. We identified just six (6%) subsequent external evaluations of an index model, five of which were external evaluations by researchers uninvolved with model development, and from a different institution. CONCLUSIONS: Very few prognostic or diagnostic models published in radiological literature are evaluated externally, suggesting wasted research effort and resources. Authors' published models should present data sufficient to allow external evaluation by others. To achieve clinical utility, researchers should concentrate on model evaluation and updating rather than continual redevelopment. CLINICAL RELEVANCE STATEMENT: The large majority of prognostic and diagnostic models published in high-impact radiological journals are never evaluated. It would be more efficient for researchers to evaluate existing models rather than practice continual redevelopment. KEY POINTS: • Systematic review of highly cited radiological literature identified few diagnostic or prognostic models that were evaluated subsequently by researchers uninvolved with the original model. • Published radiological models frequently omit important information necessary for others to perform an external evaluation: Only 20% of studies presented a model equation or nomogram. • A large proportion of research citing published models focuses on redevelopment and ignores evaluation and updating, which would be a more efficient use of research resources.

9.
Curr Opin Virol ; 62: 101347, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37604085

RESUMO

The effectiveness of early COVID-19 vaccines in reducing the severity of the disease has led to a focus on developing next-generation vaccines that can prevent infection and transmission of the virus. One promising approach involves the induction of mucosal immunity through nasal administration and a variety of mucosal vaccine candidates using different platforms are currently in development. Live-attenuated viruses, less pathogenic versions of SARS-CoV-2, have promising features as a mucosal vaccine platform and have the potential to induce hybrid immunity in individuals who have already received mRNA vaccines. This review discusses the potential benefits and considerations for the use of live-attenuated SARS-CoV-2 intranasal vaccines and highlights the authors' work in developing such a vaccine platform.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , SARS-CoV-2 , Imunidade nas Mucosas , COVID-19/prevenção & controle
10.
bioRxiv ; 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37425872

RESUMO

Highly multiplexed protein imaging is emerging as a potent technique for analyzing protein distribution within cells and tissues in their native context. However, existing cell annotation methods utilizing high-plex spatial proteomics data are resource intensive and necessitate iterative expert input, thereby constraining their scalability and practicality for extensive datasets. We introduce MAPS (Machine learning for Analysis of Proteomics in Spatial biology), a machine learning approach facilitating rapid and precise cell type identification with human-level accuracy from spatial proteomics data. Validated on multiple in-house and publicly available MIBI and CODEX datasets, MAPS outperforms current annotation techniques in terms of speed and accuracy, achieving pathologist-level precision even for challenging cell types, including tumor cells of immune origin. By democratizing rapidly deployable and scalable machine learning annotation, MAPS holds significant potential to expedite advances in tissue biology and disease comprehension.

11.
J Hepatol ; 79(3): 666-676, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37290592

RESUMO

BACKGROUND & AIMS: Liver injury after COVID-19 vaccination is very rare and shows clinical and histomorphological similarities with autoimmune hepatitis (AIH). Little is known about the pathophysiology of COVID-19 vaccine-induced liver injury (VILI) and its relationship to AIH. Therefore, we compared VILI with AIH. METHODS: Formalin-fixed and paraffin-embedded liver biopsy samples from patients with VILI (n = 6) and from patients with an initial diagnosis of AIH (n = 9) were included. Both cohorts were compared by histomorphological evaluation, whole-transcriptome and spatial transcriptome sequencing, multiplex immunofluorescence, and immune repertoire sequencing. RESULTS: Histomorphology was similar in both cohorts but showed more pronounced centrilobular necrosis in VILI. Gene expression profiling showed that mitochondrial metabolism and oxidative stress-related pathways were more and interferon response pathways were less enriched in VILI. Multiplex analysis revealed that inflammation in VILI was dominated by CD8+ effector T cells, similar to drug-induced autoimmune-like hepatitis. In contrast, AIH showed a dominance of CD4+ effector T cells and CD79a+ B and plasma cells. T-cell receptor (TCR) and B-cell receptor sequencing showed that T and B cell clones were more dominant in VILI than in AIH. In addition, many T cell clones detected in the liver were also found in the blood. Interestingly, analysis of TCR beta chain and Ig heavy chain variable-joining gene usage further showed that TRBV6-1, TRBV5-1, TRBV7-6, and IgHV1-24 genes are used differently in VILI than in AIH. CONCLUSIONS: Our analyses support that SARS-CoV-2 VILI is related to AIH but also shows distinct differences from AIH in histomorphology, pathway activation, cellular immune infiltrates, and TCR usage. Therefore, VILI may be a separate entity, which is distinct from AIH and more closely related to drug-induced autoimmune-like hepatitis. IMPACT AND IMPLICATIONS: Little is known about the pathophysiology of COVID-19 vaccine-induced liver injury (VILI). Our analysis shows that COVID-19 VILI shares some similarities with autoimmune hepatitis, but also has distinct differences such as increased activation of metabolic pathways, a more prominent CD8+ T cell infiltrate, and an oligoclonal T and B cell response. Our findings suggest that VILI is a distinct disease entity. Therefore, there is a good chance that many patients with COVID-19 VILI will recover completely and will not develop long-term autoimmune hepatitis.


Assuntos
COVID-19 , Doença Hepática Crônica Induzida por Substâncias e Drogas , Hepatite Autoimune , Humanos , Vacinas contra COVID-19/efeitos adversos , SARS-CoV-2 , COVID-19/prevenção & controle , Fígado/patologia , Receptores de Antígenos de Linfócitos T , Vacinação
12.
bioRxiv ; 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37131704

RESUMO

An attenuated SARS-CoV-2 virus with modified viral transcriptional regulatory sequences and deletion of open-reading frames 3, 6, 7 and 8 (∆3678) was previously reported to protect hamsters from SARS-CoV-2 infection and transmission. Here we report that a single-dose intranasal vaccination of ∆3678 protects K18-hACE2 mice from wild-type or variant SARS-CoV-2 challenge. Compared with wild-type virus infection, the ∆3678 vaccination induces equivalent or higher levels of lung and systemic T cell, B cell, IgA, and IgG responses. The results suggest ∆3678 as an attractive mucosal vaccine candidate to boost pulmonary immunity against SARS-CoV-2.

13.
PLoS One ; 18(5): e0283662, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228075

RESUMO

PURPOSE: This study aimed to explore the association between family satisfaction, resilience, and anxiety and depression among adolescents, and the mediating role of resilience in these relationships. METHODS: A cross-sectional study was conducted among grade 8 to 9 students from 4 secondary schools in Hong Kong. A total of 1,146 participants completed the survey. RESULTS: Respectively 45.8% and 58.0% of students scored above the cut-off for mild anxiety and mild depression. Results from linear regression analyses showed that family satisfaction was positively associated with resilience, and both family satisfaction and resilience were and negatively associated with anxiety and depression. The mediating effects of resilience on the relationship between family satisfaction and anxiety/ depression (26.3% and 31.1% effects accounted for, respectively) were significant. CONCLUSIONS: Both family satisfaction and resilience have important influence on adolescent mental health. Interventions that seek to promote positive family relationships and resilience of adolescents may be effective in preventing and reducing anxiety and depression symptoms among adolescents.


Assuntos
Depressão , Resiliência Psicológica , Humanos , Adolescente , Depressão/psicologia , Estudos Transversais , População do Leste Asiático , Ansiedade/psicologia , Satisfação Pessoal
14.
Emerg Microbes Infect ; 12(1): 2209208, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37114433

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve after its emergence. Given its importance in viral infection and vaccine development, mutations in the viral Spike gene have been studied extensively; however, the impact of mutations outside the Spike gene are poorly understood. Here, we report that a triple deletion (ΔSGF or ΔLSG) in nonstructural protein 6 (nsp6) independently acquired in Alpha and Omicron sublineages of SARS-CoV-2 augments nsp6-mediated antagonism of type-I interferon (IFN-I) signaling. Specifically, these triple deletions enhance the ability of mutant nsp6 to suppress phosphorylation of STAT1 and STAT2. A parental SARS-CoV-2 USA-WA1/2020 strain containing the nsp6 ΔSGF deletion (ΔSGF-WA1) shows reduced susceptibility to IFN-I treatment in vitro, outcompetes the parental strain in human primary airway cultures, and increases virulence in mice; however, the ΔSGF-WA1 virus is less virulent than the Alpha variant (which has the nsp6 ΔSGF deletion and additional mutations in other genes). Analyses of host responses from ΔSGF-WA1-infected mice and primary airway cultures reveal activation of pathways indicative of a cytokine storm. These results provide evidence that mutations outside the Spike protein affect virus-host interactions and may alter pathogenesis of SARS-CoV-2 variants in humans.


Assuntos
COVID-19 , Interferon Tipo I , Humanos , Animais , Camundongos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Interferon Tipo I/metabolismo , Mutação , Glicoproteína da Espícula de Coronavírus
16.
Gigascience ; 122023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36939008

RESUMO

BACKGROUND: Genetic recombination is a tremendous source of intrahost diversity in viruses and is critical for their ability to rapidly adapt to new environments or fitness challenges. While viruses are routinely characterized using high-throughput sequencing techniques, characterizing the genetic products of recombination in next-generation sequencing data remains a challenge. Viral recombination events can be highly diverse and variable in nature, including simple duplications and deletions, or more complex events such as copy/snap-back recombination, intervirus or intersegment recombination, and insertions of host nucleic acids. Due to the variable mechanisms driving virus recombination and the different selection pressures acting on the progeny, recombination junctions rarely adhere to simple canonical sites or sequences. Furthermore, numerous different events may be present simultaneously in a viral population, yielding a complex mutational landscape. FINDINGS: We have previously developed an algorithm called ViReMa (Virus Recombination Mapper) that bootstraps the bowtie short-read aligner to capture and annotate a wide range of recombinant species found within virus populations. Here, we have updated ViReMa to provide an "error density" function designed to accurately detect recombination events in the longer reads now routinely generated by the Illumina platforms and provide output reports for multiple types of recombinant species using standardized formats. We demonstrate the utility and flexibility of ViReMa in different settings to report deletion events in simulated data from Flock House virus, copy-back RNA species in Sendai viruses, short duplication events in HIV, and virus-to-host recombination in an archaeal DNA virus.


Assuntos
Ácidos Nucleicos , Vírus , RNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Vírus/genética , Recombinação Genética , Genoma Viral
17.
J Vasc Interv Radiol ; 34(8): 1291-1302.e1, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36977432

RESUMO

The discovery of increasing numbers of actionable molecular and gene targets for cancer treatment has driven the demand for tissue sampling for next-generation sequencing (NGS). Requirements for sequencing can be very specific, and inadequate sampling leads to delays in management and decision making. It is important that interventional radiologists are aware of NGS technologies and their common applications and be cognizant of the factors that contribute to successful sample sequencing. This review summarizes the fundamentals of cancer tissue collection and processing for NGS. It elaborates on sequencing technologies and their applications with the aim of providing readers with a working understanding that can enhance their clinical practice. It then describes imaging, tumor, biopsy, and sample collection factors that improve the chances of NGS success. Finally, it discusses future practice, highlighting the problem of undersampling in both clinical and research settings and the opportunities within interventional radiology to address this.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Biópsia , Sequenciamento de Nucleotídeos em Larga Escala/métodos
19.
Emerg Microbes Infect ; 12(1): e2161422, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36594261

RESUMO

The rapid evolution of SARS-CoV-2 Omicron sublineages mandates a better understanding of viral replication and cross-neutralization among these sublineages. Here we used K18-hACE2 mice and primary human airway cultures to examine the viral fitness and antigenic relationship among Omicron sublineages. In both K18-hACE2 mice and human airway cultures, Omicron sublineages exhibited a replication order of BA.5 ≥ BA.2 ≥ BA.2.12.1 > BA.1; no difference in body weight loss was observed among different sublineage-infected mice. The BA.1-, BA.2-, BA.2.12.1-, and BA.5-infected mice developed distinguishable cross-neutralizations against Omicron sublineages, but exhibited little neutralization against the index virus (i.e. USA-WA1/2020) or the Delta variant. Surprisingly, the BA.5-infected mice developed higher neutralization activity against heterologous BA.2 and BA.2.12.1 than that against homologous BA.5; serum neutralizing titres did not always correlate with viral replication levels in infected animals. Our results revealed a distinct antigenic cartography of Omicron sublineages and support the bivalent vaccine approach.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , Camundongos , SARS-CoV-2/genética , Melfalan , Anticorpos Antivirais , Anticorpos Neutralizantes
20.
Curr Top Behav Neurosci ; 61: 243-264, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36059003

RESUMO

BACKGROUND: Herpesviruses alter cognitive functions in humans following acute infections; progressive cognitive decline and dementia have also been suggested. It is important to understand the pathogenic mechanisms of such infections. The complement system - comprising functionally related proteins integral for systemic innate and adaptive immunity - is an important component of host responses. The complement system has specialized functions in the brain. Still, the dynamics of the brain complement system are still poorly understood. Many complement proteins have limited access to the brain from plasma, necessitating synthesis and specific regulation of expression in the brain; thus, complement protein synthesis, activation, regulation, and signaling should be investigated in human brain-relevant cellular models. Cells derived from human-induced pluripotent stem cells (hiPSCs) could enable tractable models. METHODS: Human-induced pluripotent stem cells were differentiated into neuronal (hi-N) and microglial (hi-M) cells that were cultured with primary culture human astrocyte-like cells (ha-D). Gene expression analyses and complement protein levels were analyzed in mono- and co-cultures. RESULTS: Transcript levels of complement proteins differ by cell type and co-culture conditions, with evidence for cellular crosstalk in co-cultures. Hi-N and hi-M cells have distinct patterns of expression of complement receptors, soluble factors, and regulatory proteins. hi-N cells produce complement factor 4 (C4) and factor B (FB), whereas hi-M cells produce complement factor 2 (C2) and complement factor 3 (C3). Thus, neither hi-N nor hi-M cells can form either of the C3-convertases - C4bC2a and C3bBb. However, when hi-N and hi-M cells are combined in co-cultures, both types of functional C3 convertase are produced, indicated by elevated levels of the cleaved C3 protein, C3a. CONCLUSIONS: hiPSC-derived co-culture models can be used to study viral infection in the brain, particularly complement receptor and function in relation to cellular "crosstalk." The models could be refined to further investigate pathogenic mechanisms.


Assuntos
Infecções por Herpesviridae , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Complemento C3/metabolismo , Neurônios/metabolismo , Convertases de Complemento C3-C5/metabolismo , Encéfalo/metabolismo , Infecções por Herpesviridae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...